CIVIL ENGINEERING DEPARTMENT The University of Lahore
 Irrigation and Hydraulic

Q. No. 1 An impervious floor of 16 m length, three sheet piles are
(a) provided. Two sheet piles are of equal depth for 3 m at the two ends. The middle sheet pile is of 4 m depth located in the centre (figure below). Calculate;
i) Uplift pressure at key points $\mathrm{C}_{1}, \mathrm{E}_{2}, \mathrm{D}_{1}, \mathrm{C}_{2}$ and E_{3}.
ii) Also Calculate the Floor Thickness at point C_{2} and E_{2}
Q. No. 2 Derive the following Relationship using Lacey's Regime Theory of Channel Design;
i) $S_{b}-f-R-R e l a t i o n s h i p$
ii) $Q-f-R-R e l a t i o n s h i p$
Q. No. 3 Differentiate the following;
i) Accretion and Retrogression
ii) Undermining and Uplift
iii) Hydraulic and Exist Gradient
iv) Critical Depth and Drowning Ratio
v) Discharge Intensity and the Peak Flood

